

UNIT PLAN FORMAT

TITLE OF THIS UNIT: Fluids-Viscosity, Density & Buoyancy **AUTHOR:** R. Atcha **BOARD:** Peel Board of Education **LENGTH OF UNIT:** 12 hours (16 lessons x 45 minutes) GRADE LEVEL(S): Grade 8

PANEL (El/Sec): Elementary EDU Course Code:

This unit was created with the help of the Ontario Curriculum documents and B. Jackson (Camilla Senior Public School)

TASK CONTEXT

The study of fluids, which can be either liquids or gases, introduces students to fluid mechanics, an area of knowledge important in many industries (such as aeronautics, engineering, meteorology, and oceanography). Fluids, including air and water, are essential to many industrial processes and form the basis of hydraulic and pneumatic devices. Students will learn about the properties of fluids by experimenting with and investigating the viscosity and density of different liquids and ways in which these properties affect objects placed in those liquids. Students will explore the implications of Archimedes' principle by investigating and measuring the buoyant forces on different objects. As well, they will learn about the diverse applications of the principles involved in fluid mechanics, including industrial applications such as jet propulsion, and everyday applications such as ensuring that sauces are cooked to the right consistency (degree of viscosity).

This unit follows the unit of optics and life systems. As the fluids unit will discuss the functioning of the heart and other life systems using fluids, its placement in the school year after the life systems is essential. Furthermore, students will look at how viscosity and density can affect daily living from food to transportation. Students will be asked to recall material learned in previous units and from previous years (the Particle Theory for example.) The unit will be taught using written notes, brainstorming, experimentation and research to meet the needs of students of various learning styles and abilities. Group work will be prevalent to encourage co-operation, enquiry skills and the practice of correct laboratory methods. In addition, group work will help ESL students in the class to participate in classroom activities and to learn from their peers. The inclusion of demonstrations (discrepant events) and class discussions should help peak student interest and curiosity.

TASK SUMMARY

The unit will begin with an introduction to fluids where students will brainstorm different kinds of fluids, their uses in daily living, industry and life systems. Students will explore three properties of fluids- viscosity, density and buoyancy in terms of the Particle Theory of Matter. Students will explain, using the Particle Theory, how the viscosities, densities and buoyancies of various fluids differ and why. Demonstrations and notes will be given to describe the spaces between particles, movement of particles and the attraction between particles in solids, liquids and gases.

Laboratory experimentation in conjunction with a written note will help students compare viscosities of different fluids and investigate the effects of temperature on viscosity. The importance of flow rate in daily living will be discussed both in written and oral form. Next, students will use the Particle Theory to explain densities of different substances and they will be asked to relate viscosity levels to density. Using both

demonstrations and experimentation, students will discover first hand how fluids of differing densities interact. Once the concept of density is introduced, students will be asked to calculate density, mass and volume using the equation D=M/V. The final task of this unit will be to discuss buoyancy while relating it to density. Students will participate in a Science Olympics in which they will be asked to construct the most buoyant aluminium foil boat using their knowledge of density and displacement. Applications of buoyancy, namely ballasts and swim bladders, will be also be discussed.

The students will have completed a unit on life systems that will be essential if students are to make connections between fluids and life processes such as respiration and heart function. Furthermore, introduction of these three properties of fluids will establish a basis for the second part of the fluids unit-hydraulics and fluid mechanics.

OVERALL UNIT EXPECTATIONS

- 1. Demonstrate an understanding of the properties (e.g., viscosity) and the buoyant force of fluids
- 2. Investigate the buoyant force and other properties (e.g., viscosity) of fluids, and design and construct pneumatic or hydraulic systems that solve a problem in a given situation;
- 3. Describe how knowledge of the properties of fluids can help us to understand and influence organisms in the natural world

Understanding Basic Concepts

By the end of Grade 8, students will:

- 4. Compare various liquids in terms of their viscosity (e.g., water, syrup, oil, detergent, ketchup);
- 5. Compare qualitatively the densities of solids, liquids, and gases;
- 6. Predict how the flow rate (an indicator of viscosity) of different liquids is affected by temperature;
- 7. Describe qualitatively the relationship between mass and weight (e.g., the mass of an object is constant but the weight of an object varies as the pull of gravity on the object changes);
- 8. Describe qualitatively the relationship between viscosity and density (e.g., with some exceptions, the greater the viscosity, the greater the density);
- 9. Determine, through experimentation, the mass-to-volume ratio of different amounts of the same substance (e.g., copper pennies);
- 10. Describe the relationship between the mass, volume, and density of solids, liquids, and gases, using the particle theory;
- 11. Compare fluids in terms of their compressibility or incompressibility (e.g., gases versus liquids);
- 12. Recognize and state the relationship between gravity and buoyancy (e.g., without gravity there is no buoyancy);
- 13. Explain the effects of changes in temperature on the density of solids, liquids, and gases, and relate their findings to the particle model of matter;

Developing Skills of Inquiry, Design, and Communication

By the end of Grade 8, students will:

- 14. Formulate questions about and identify needs and problems related to the properties of fluids, and explore possible answers and solutions (e.g., design a fair test to determine whether oil, water, or glycerol has the greatest viscosity);
- 15. Plan investigations for some of these answers and solutions, identifying variables that need to be held constant to ensure a fair test and identifying criteria for assessing solutions;
- 16. Use appropriate vocabulary, including correct science and technology terminology, to communicate ideas, procedures, and results (e.g., use terms such as *flow rate, viscosity, compressibility, fluid, density, pneumatics, hydraulics*);
- 17. Compile qualitative and quantitative data gathered through investigation in order to record and present results, using diagrams, flow charts, frequency tables, graphs, and stem-and-leaf plots produced by hand or with a computer (e.g., accurately measure and record the density of different

liquids using a hydrometer);

 Communicate the procedures and results of investigations for specific purposes and to specific audiences, using media works, written notes and descriptions, charts, graphs, drawings, and oral presentations (e.g., create a table to show the relationship between the buoyant force and size of object);

Relating Science and Technology to the World Outside the School

By the end of Grade 8, students will:

- 19. Describe situations in which the density of a substance changes naturally (e.g., molten lava as it cools; air when mirages form) or is intentionally altered (e.g., air in a hot-air balloon; cream when it is churned and cooled);
- 20. Identify some design features (e.g., of aircraft, cars, submarines) and explain how the design makes use of one or more of the properties of fluids;

identify industries in which the principles of fluid dynamics play a central role (e.g., aeronautics, shipping).

PRIOR KNOWLEDGE

LEARNERS

At the start of this unit, students should be familiar with the Particle Theory of Matter and basic knowledge about the different states of matter. They should know terms including solution, mechanical mixtures, particles. A brainstorming activity that will ask students to list all they know about fluids (different kinds, uses, occupations related to fluids, application in industry, homes, environment and the human body) will serve as a pre-assessment tool. Students in the class will be coming from different academic backgrounds and different language abilities as well. The pre-assessment will help determine the time allotted to review and the overall progression of the unit.

LEARNING ENVIRONMENT

SPACE

- Classes will be held in a science laboratory with movable desk and chair, sinks and side lab benches.
- Students will be seated at desks in groups of three. As the desks are movable, they will be rearranged for laboratories and for the Science Olympics. Desks will be pushed to the sides of the room to make space for the Olympics.
- Tables are available at the back of the room to arrange materials for labs
- A computer and projector will need to be reserved for a PowerPoint presentation for the subtask on density
- The room is very spacious and comfortably seats up to 25 students

TIME

- Each 6-day cycle will consist of two 45 minute lessons and one 90 minute double period reserved for laboratories (three will be required in this unit)
- Settling students in, taking attendance and collecting assignments generally takes 10 minutes so each lesson should run 35 minutes

CULMINATING ACTIVITIES

Throughout the unit, students will be asked to submit laboratory reports and density word problems for evaluation.

The final assessment will consist of a one period long unit test. Students will complete a unit test that will assess knowledge and understanding, problem solving and application skills acquired over the course of the unit. The test will consist of multiple choice, true/false, short answer questions and diagram labelling. Students will be asked to recall knowledge of relevant terms (fluids, density, flow rate, buoyancy, gravity, displacement, potential energy viscosity.)

UNIT-WIDE RESOURCES

- Nelson Textbook and Teacher Resource Book –Fluids Unit (only one class set is available so work must be completed in-class)
- PowerPoint and computer
- Internet/Web pages http://school.discovery.com/teachingtools/teachingtools.html (for activities)

 http://teamillasenior3.homestead.com/fluids.html (Links and Fluids Information)

 http://www.marcopolo-education.org/ (Brain teasers and lesson ideas)

 http://www.eiu.edu/~science/discrepant/wannacoke.html (Coke

discrepant event)

http://tiger.coe.missouri.edu/~pgermann/DiscEvent/ (Discrepant events -alcohol

and water)

- Assessment tools: formal lab report rubric, unit test, homework checklist, peer/self evaluation checklist
- Handouts: Viscosity lab instructions, density worksheet, density word problems, Science Olympics
- Instruction Sheet
- Materials rubbing alcohol
 - food colouring
 - beakers
 test tubes
 - test tubes
 - card board ramps
 - stop watches
 - liquids for testing (corn syrup, shampoo, ketchup, chocolate, corn starch)
 - salt
 - eggs
 - foil paper
 - large basin
 - oil
 - vinegar
 - seasonings

TEACHER PLANNING SHEET – LIST OF SUBTASKS

рау	SUBTASK DESCRIPTION	SPECIFIC EXPECTATIONS	TEACHING/ LEARNING STRATEGIES	RESOURCES	ASSESSMENT EVALUATION Type - Strategy Tool	PLANNING NOTES
1	(45 minutes) Introduction to Fluids A brief introduction to fluids will be given. As a preassesement, students will be asked to brainstorm all they know about fluids (kinds, uses, applications, occupations.) The ideas will be presented to the rest of the class.	1 3 19 20	 Socratic dialogue: The teacher will begin by asking students what the term fluids means to them. This will lead into a discussion about the states of matter and the particle theory. Brainstorming: In groups of three students will brainstorm using a web set-up all they know about fluids. Each group will briefly share their ideas. Using the knowledge from the brainstorming, a short note on the Particle theory of Matter will be given. Lecture: Students will copy a short note on fluids that will be written on the board 	Teacher will refer to the Nelson text and teacher resource book. Chart paper and markers for brainstorming	The scope and detail of the brainstorming ideas will be used to assess background knowledge. Questions will be asked throughout the lesson to determine student understanding.	Several ESL students are in each of the four classes being taught. Allow for extra time for students to copy note or provide a handout that students just need to fill in Seat ESL students with top students who would be willing to help out.
2	 (45 minutes) <u>Fluids-Lesson Two</u> Review Particle Theory of Matter and add more detail. Students will dramatize the behaviour of particles in each state of matter. Topics such as turbulence, streamline flow, air/wind resistance will be introduced. Students will read and complete questions on these topics 	1 3 4 13 14 16 20	 Demo: Class will begin with a demo using ketchup, fries and vinegar. Students will be asked to explain the behaviours of the three substances using the particle theory. Activities: Dividing the class into three groups, each group will dramatize one of the 3 states of matter. Students will read and complete questions on turbulence, streamline flow, resistance. Teacher will be available to offer extra help for struggling students and to keep students on task. 	Overhead/ blackboard Nelson Text	Informal evaluation of dramatization Answers to questions will be collected and checked for completeness and accuracy	During the dramatization, be aware of volume levels, off task behaviours and uncooperative behaviour Desks may be rearranged for dramatization Analogy- best friends (solids), acquaintances (liquids), enemies (gases) Although students cannot take texts home, a few photocopies of the material should be made for ESL and LD students who will require extra time to complete the assigned work

3	(45 minutes)	1	1. Demo: The teacher will measure out	Vinegar	Informal assessment	Students will need to gather
5	Introduction to Viscosity	4	equal volumes of water and alcohol.	Colouring	based on discussion	around the back sink. They
	Demo of "disappearing liquids"	5	I will talk through my procedure,	1 L container		may stand or move their chairs
	using rubbing alcohol and	10	asking students to form hypotheses	Water/sink	Teacher must	to the back. Be prepared for
	water to explain the space	13	about what will happen if equal	Water/Sirik	prepare guided	much discussion. This is an
	between particles.	14	volumes of alcohol and water are	Overhead	questions for	opportunity to challenge gifted
	between particles.	16	combined. Discussion about how	projector or black	discussion	students with a brief intro to
	Conduct a discussion asking	10	particles move past each other	board	01300331011	chemical structures of
	students to explain the loss of		particles move past cach other	board	Take up homework	molecules
	volume. This will lead to		2. Lecture: Ask students to describe	Internet	questions next day	molecules
	viscosity and how the space		the movement of particles in a thick	internet	questions next day	Teacher should practice demo
	between the particles and low		fluid versus a thin one. Get	Cross word		prior to class (different
	attraction between particles		volunteers to dramatize particles in	puzzle for		concentrations of alcohol will
	leads to flow and viscosity.		think fluid (ketchup) and thin	homework		affect results)
	loado to now and viocobity.		(vinegar).Define viscosity, and			
	Short written note on viscosity		provide a short note on the board or			Make note brief. Students will
	choit whiten here on viceosity		overhead projector. Students will			discover details in the lab next
			take notes			class.
			Prepare students for lab class			Tips: <u>H</u> igh viscosity= <u>H</u> ard to
						pour OR
						<u>L</u> ow viscosity= <u>L</u> iquidy
						=
4	(90 minutes)	1	1. Socratic Dialogue: Take up	Ramps	Students will submit a	Ensure that groups include
	Viscosity Race Lab	3	homework as a short review of last	Таре	formal lab report to be	students of different academic
	Students will conduct an	4	class and to introduce the lab	Shampoo	marked out of 100	levels and ESL students. Each
	experiment in groups to	6	activity.	Ketchup	marks. Teacher may	group should assign tasks to
	investigate the relationship		2. Investigation: Students will work in	Corn syrup	wish to include a	each group member to
	between viscosity and flow	14	the assigned groups of 3-4 to	Corn starch for	peer/ self evaluation	promote a sense of
	rate of various liquids	15	complete a lab on viscosity and flow	extension	in the assessment	responsibility and co-operation
	·	16	rate. The teacher will review	Stop watches		
		17	classroom rules and monitor on task	Rulers		Students need to be reminded
		18	behaviour and answer questions.	Wax paper		to clean up after the lab. You
		20	Students will have time to copy out	Lab sheet		may wish to include a mark for
			lab procedures, questions etc prior	handout		this to ensure it gets done.
			to the end of class. (see attached)			-
5	(45 minutes)	1	1. Assessment: A short quiz will be	Quiz	Peer marked quizzes	In some classes, peer marking
	Viscosity and Temperature	3	distributed and will be taken up in		collected and marks	may not be advised either due
	Collect lab reports	4	class	Hot plate	recorded	to history of cheating or the
		6	2. Demo and Dialogue: Teacher will	Blow		time it takes for students to
	Quiz-Fluids and the Particle	13	demonstrate the effects of increased	Waxed paper	Informal assessment	mark
	Theory (short and with recall or	16	temperature on the flow rate of	Ramp	during discussion	
	recognition questions only)	20	fluids. Students will be asked to	Stop watch		If a hot plate is not available,

	Chocolate demo showing the effects of temperature on flow rate followed by note. As heat is added, particles gain energy, move quicker, have more space and less attractive forces. Therefore lower viscosity results		explain what is happening at the particle level 3. Lecture: The dialogue will be summarized in a short note 4. Homework questions assigned	Chocolate Blackboard	Take up homework next class	use a microwave prior to class then keep it in a hot water bath If time permits, try using dark vs milk chocolate
6	 (45 minutes) <u>Introducing Density</u> Take up homework Density Demo using Regular and Diet Coke-introduce ideas of displacement, mass, volume and refer back to the Particle Theory. PowerPoint Presentation and note. Discuss density in everyday life 	1 3 5 8 9 10 16 19	 Homework question taken up Demo: Students will examine cans of pop, will be asked to list similarities and differences. Teacher may record ideas on the board. Draw attention to volume of the cans. Place both cans in basin and discuss results. Lecture: Using PowerPoint presentation provide an introduction to density using animation, notes and applications. Introduce finding volume using displacement and calculations 	Pop cans Water Basin Computer Projector PowerPoint file	Homework Participation checklist	Some classes may require more guidance to reach correct conclusions about varying densities. You could bring in Nutra Sweet and sugar to show the different volumes, weigh the cans after the demo Have a written version of the powerpoint available in case of technical difficulties
7	 (45 minutes x 2) <u>Density Lab</u> Quiz- viscosity Salad Dressing lab-students will investigate the effects of mixing fluids with different densities Comparing weight vs mass. Discuss change of mass on the moon etc. Recall appropriate units for mass and conversion (g->kg or kg-> g) 	8 9 10 13 14 15 16	 Assessment: A short quiz will be distributed and will be taken up in class Investigation: In pre assigned groups students will make "salad dressing" using vinegar, oil, salt, pepper in a test tube. They will shake the mixture then let sit for ten minutes while they copy discussion questions. They will observe the test tube after allotted time Lecture and demo: Will weigh a lump of clay in air and in water. Discuss mass versus weight and provide a note for the students. 	Oil Vinegar Seasonings Test tubes Test tube holders Clay Beaker with water Spring scale	Peer marked quizzes collected and marks recorded Collect discussion questions for evaluation	This lesson works well in a double period but can also be split into two classes with the topic of weight and mass being the second lesson ESL students may require more time for short answer quiz. Limiting questions to m/c, t/f or fill in the blanks may facilitate flow of lesson

	· · - · · · · · · · · · · · · · · · · ·				[_ · · ·	
8	(45 minutes x 2)	1	Lesson 1:	Beaker	Take up homework	Some students will struggle
	Density Word Problems	3	1. Socratic Dialogue: Have a beaker	Oil	questions	with the mathematics involved
	Lesson 1:	5	with oil and water. Ask students to	Water		in this section. Be sure to
	Review definition of density	7	remind you why the layering occurs	Colouring	Peer marked quizzes	review volume problems.
	and volume equations	9	in terms of density. How can density	(optional)	collected and marks	
	·	16	be quantified?		recorded	Be clear on the proper format
	Complete several word	18	2. Lecture: In a note, state the	Black board		for answering such problems
	problems with increasing		equations for volume and density.	Question sheet	Word problems will	(given. unknown, solution,
	difficulty		Starting with simple word problems	Quotion onoot	be collected and	therefore statement)
	ameany		and progressing to more difficult		marks will be	
	Assign homework		questions, complete sample		recorded	
	Assignmentework		problems with students.		recorded	
	Lesson 2:					
			3. Activity: Assign 3 word problems for			
	Quiz on density (no word		homework. Students can begin			
	problems)		working on them in class			
	Take up homework		Lesson 2:			
	rake up homework		1. Quiz: Students will complete a 10			
			minute quiz on density (no word			
			problems) Quiz will be corrected in			
			class			
			2. Homework: Homework questions will			
			be taken up in class. Ask students to			
			help you work through problems on			
			the board			
			3. Activity: Give students time to copy			
			out questions for their density			
			assignment. Those that finish			
			copying can begin answering word			
			problems.			
10	(90 minutes)	1	1. Socratic Dialogue: Review the	Foil paper	Collect a written	Make an Olympic symbol on
	Buoyancy Science Olympics	3	results of the pop can demo. Ask	Ruler	rationale for the boat	the blackboard, medals, have
		9	students what allowed one can to	Scissors	design (one copy	a prize available
	Using their knowledge of	10	float but not the other. Review	Basin	from each group) for	
	density and displacement,	14	displacement and how comparisons	Sinks	evaluation or to	Be clear on instructions and
	students will construct the	15	of density are made	Pennies	determine level of	timing will be key
	most buoyant boat using	16	2. Investigation: Distribute activity		understanding. This	
	limited materials		sheet and materials. Outline the		may help in planning	Be prepared for high noise
			activity expectations to the whole		the detail for the next	levels. Perhaps establish
	A brief introduction of		class. Ensure students are not		lesson	consequences for out of hand
	buoyancy will be given to help		cheating and be available to answer			behaviour (no prize)
	students identify the		questions. Students will present their			
	relationship between buoyancy		boat and compete. (see attached)			
			boar and compete. (See allached)			
	and density					

			T	1	1	
11	(45 minutes) <u>Buoyancy , Gravity and</u> <u>Density</u> By discussing the results of the Science Olympics, we will define buoyancy and its relationship with density Discussion of gravitational and buoyant forces in fluids Positive, neutral and negative buoyancy		 Socratic Dialogue: Have sample boats displayed at front. Discuss the results of the Olympics and ask why students believe the winning group won. Guide them to think about displacement, density, area/volume. Use examples Lecture: On the blackboard, summarize the discussion and provide a note including the definition of buoyancy. Explain the role of gravity and its relationship with buoyancy. Give examples of hot air balloons, helium balloons. Include negative, neutral and positive buoyancy. 	Aluminium boats Blackboard	Informal assessment through discussion	This is a great place to review density and the particle theory. Guide discussions to include relevant terms
12	(45 minutes) <u>Application of Buoyancy</u> Students will learn about the application of buoyancy in nature and technology Will look at swim bladders, ships, ballasts	12 16 18	 Demo: Egg floating in salt water and sinking in tap water-ask questions to promote a discussion Socratic Dialogue: Short discussion/review of buoyancy. Use a brain tester to stimulate thinking Activity: Students will read the section entitled "Ballasts and Bladders" in their textbooks and will complete questions from the text. Answers will be submitted for evaluation. Take up some questions in class to ensure students are on the right track 	Nelson text-fluids unit Beakers Salt eggs	Collect answers to questions at the end of the section	
13	(45 minutes) Unit Test Students will complete a 35 minute unit test that will assess their knowledge and understanding of fluids. The test will assess their problem solving skills, and case study applications. The test consists of m/c, t/f, matching, short answer, labelling, and word problems for density.		Distribute tests- students have the bulk of the period to complete the test. Students who finish can work on fluids brain teasers	Test papers Calculators Pencils	Test marking scheme	Ensure the correct number of tests are photo copied LD students may require extra time as directed by resource teacher

ACCOMODATIONS

SPECIAL NEEDS

Seating Plan: Students with LD or ESL students will be seated near or with stronger students in this subject area. It is important to ask the stronger students if they are willing to help struggling students with their work. Choose only those students who have shown themselves to be consistently helpful, respectful and considerate to school and classroom rooms. Also visually or hearing impaired students will be seated near the centre and front of the class.

Teaching Strategies: The lessons will be broken down into shorter segments to help maintain student interest and attention. Because there are several ESL students in my classes, notes are short and explained verbally prior to writing on the board. Many visual cues and demonstrations are included in most lessons. Also, with the advice of resource and ESL teachers, these students will be given extra time to complete test/quizzes and assignments.

Extra Help: All students have been told they may come in for help. Computers and the internet are also available on the 2 classroom computers.

DIVERSITY ISSUES

A variety of teaching strategies are employed in this unit. Using visual cues, demonstrations, dramatic representations, written notes, hands on activities and labs not only helps the teacher maintain interest on the part of students, it also helps accommodate students with different learning styles.

Being sensitive to cultural diversity in the classroom is essential. Try to encourage students of different backgrounds to express their opinions and bring different examples into discussions. Also, the female students need to be encouraged to part take in classroom discussions. A zero tolerance on derogatory statements needs to be established in order to create a classroom environment where risk taking is promoted.